SESTSUIPSE

WA LT T
ao S

Topic

Reference

Recursion and
Backtracking

Ch.1 and Ch.2 JeffE

Dynamic Programming

Ch.3 JeffE and Ch.15 CLRS

Greedy Algorithms

Ch.4 JeffE and Ch.16 CLRS

Amortized Analysis

Ch.17 CLRS

Elementary Graph
algorithms

Ch.6 JeffE and Ch.22 CLRS

Minimum Spanning
Trees

Ch.7 JeffE and Ch.23 CLRS

Single-Source Shortest
Paths

Ch.8 JeffE and Ch.24 CLRS

All-Pairs Shortest Paths

Ch.9 JeffE and Ch.25 CLRS

Maximum Flow

Ch.10 JeffE and Ch.26 CLRS

String Matching

Ch.32 CLRS

NP-Completeness

Ch.12 JeffE and Ch.34 CLRS

shortest-paths problem

(s (003 0y o LB L izl 5l @

el 00l asiine ol (89, g (2blE g0 o sl alold aS o ls oKiils) and SO @
:OSMO‘)&_K‘{.
m.:Sb%|)J9bw)3.¢l3951ew‘omTw¢ngLaJ9bg¢?33L‘

shortest-paths problem

35,08 gy 95, e (0 SO0
POUIII W EC PIA L R E ORI ES e IR B O

ConsS az ol ol j b jos Sloxd g 09 47 oduzey allus ST ¢

@ axg b ad) |y o op 0lisS Jsb gooOgle map gwaze Jio 3,5 slo asly ®
QQ.A.SLSA&.JLM.«}LQLS‘)J (.E}).: LSLQ’ oolo

shortest-paths problem

S oo i o]y aiats dea U ol o 5l dlold o palisS alins | aud> cpl o °

e o0 1y B yee (2 70lsS Jobo arulone sl (2L o551

shortest-paths problem (formal definition)

* we are given a weighted, directed graph G = (V, E), with weight function
w: E — R mapping edges to real-valued weights.

* The weight of pathp =< v,,v4,..., U > is the sum of the weights of its
constituent edges:

k
wp) =) wvis,v)
i=1

* We define the shortest-path weight from u to v by

_.min{w(p) : u 2v} if there is a path fromutov
ou, v) = $g otherwise

* A shortest path from vertex u to vertex v is then defined as any path
p with weight w(p) = 6(u, v).

S Joe SIS SH L) (b e dliese oy oo

wies B cla ol b abolis

Sl @bl g0 alols JU (nl (59 45 Cod SIS Jb S ol 95 50 (s
Sl SIS cnl ol 99 G e (25 065 (30,5 o S

* The breadth-first-search algorithm from Section 22.2 is a shortest-
paths algorithm that works on unweighted graphs, that is, graphs in

which each edge can be considered to have unit weight.

single-source shortest-paths problem

* focus of this session!

* Givenagraph G = (V,E), we want to find a shortest path from a
given source vertex s € IV toeachvertexv € V.

other shortest paths problems (1)

* Single-destination shortest-paths problem: Find a shortest path to a
given destination vertex t from each vertex v. By reversing the
direction of each edge in the graph, we can reduce this problem to a
single-source problem.

other shortest paths problems (2)

* Single-pair shortest-path problem: Find a shortest path from u to v
for given vertices u and v. If we solve the single-source problem with
source vertex u, we solve this problem also.

* Moreover, no algorithms for this problem are known that run
asymptotically faster than the best single-source algorithms in the
worst case.

other shortest paths problems (3)

* All-pairs shortest-paths problem: Find a shortest path from u to v for
every pair of vertices u and v.

* Although this problem can be solved by running a single source
algorithm once from each vertex, it can usually be solved faster.
Additionally, its structure is of interest in its own right. Later, we
addresses the all-pairs problem in detail.

Optimal substructure of a shortest path

» Shortest-paths algorithms typically rely on the property that a
shortest path between two vertices contains other shortest paths
within it.

* greedy method
* Dijkstra’s algorithm (to solve the single-source shortest-paths problem on a
weighted, directed graph in which all edge weights are nonnegative)
e dynamic-programming
* Floyd-Warshall algorithm (to find shortest paths between all pairs of vertices)

Lemma 24.1
(Subpaths of shortest paths are shortest paths)

* Given a weighted, directed graph ¢ = (V, E') with weight function
w: E - R,

letp =< vq,v,,...,V, > be ashortest path from vertex v, to vertex

vy and, foranyiandjsuchthatl < i < j < k,

let p;; = <V, Viyq,...,V; > be the subpath of p from vertex v; to
vertex v; .

Then, p;; is a shortest path from v; to v; .

Proof : contradiction

Negative-weight edges

* If there is a negative-weight cycle reachable from s, however,
shortest-path weights are not well defined.

* If there is a negative-weight cycle on some path from s to v, we
define 6(s,v) = —oo.

* If the graph G = (V, E) contains no negative weight cycles reachable
from the source s, then for all v € V, the shortest-path weight
0 (s, v) remains well defined,

Example
to understand the effect of negative weight edges

17

Cycles

e Can a shortest path contain a cycle?

Cycles

e Can a shortest path contain a cycle?

* As a result:
we can restrict our attention to shortest paths of at most |V| — 1 edges.

Representing shortest paths

» wish to compute not only shortest-path weights, but the vertices on
shortest paths as well

* Givenagraph G = (V,E), we maintain for each vertexv € V a
predecessor t|v] that is either another vertex or NIL.

e T attributes:

the chain of predecessors originating at a vertex v runs backwards
along a shortest path from sto v

Remember PRINT-PATH(G, s, v)?

predecessor subgraph G,

* predecessor subgraph G, = (V,, E;) induced by the m values.
V., =1{v € V: m|v] # NIL} U {s}.
*Ep = {(n[v]v) € E: v €V — {s}}

* the algorithms in this chapter have the property that at termination
Grtis a “shortest-paths tree”

* During the execution of a shortest-paths algorithm, however, the it values
need not indicate shortest paths

shortest-paths tree

* A shortest-paths tree rooted at s is a directed subgraph G’
= (V',E"), whereV' € V andE’ € E, such that

1. V'isthe set of vertices reachable from s in G,
2. G' forms a rooted tree with root s, and

3. forallv € V', the unique simple path from s to v in G’ is a shortest
path fromstovinG.

Shortest paths are not necessarily unique, and neither are shortest-
paths trees.

Example
two shortest paths trees with the same root

23

the technique of relaxation

* d[v] a shortest-path estimate
* isan upper bound on the weight of a shortest path from source s to v

* The process of relaxing.an edge (u, v) consists of testing whether we
can improve the shortest path to v found so far by going through u
and, if so, updating d[v] and mt[v].

25

Each algorithm in this chapter calls INITIALIZE-SINGLE-SOURCE and then
repeatedly relaxes edges.

* INITIALIZE-SINGLE-SOURCE(G, s)
1 for each vertex v € V|[(G]

2 do d[v] «

3 m[v] « NIL

4d[s] « 0O

* RELAX(u, v,w)

lifd[v] > d[u] + w(u,v)

2 then d[v] « du] + w(u,v)
3 |v] « u

* relaxation is the only means by which shortestpath estimates and
predecessors change.

* The algorithms in this chapter differ in how many times they relax
each edge and the order in which they relax edges.

* In Dijkstra’s algorithm and the shortest-paths algorithm for directed
acyclic graphs, each edge is relaxed exactly once.

* In the Bellman-Ford algorithm, each edge is relaxed many times.

Properties of shortest paths and relaxation

* These properties are used to prove that the algorithms in this chapter
are correct

Properties of shortest paths and relaxation

* Triangle inequality (Lemma 24.10)
For any edge (u,v) € E,wehaveé(s,v) < 8(s,u) + w(u,v).
* Upper-bound property (Lemma 24.11)

We always have d[v} > 0(s,v) for all verticesv € V, and once d|v]
achieves the value 6(s, v), it never changes.

* No-path property (Corollary 24.12)
If there is no path from s to v, then we always have d[v] = §(s,v) = oo.
* Convergence property (Lemma 24.14)

If s ~» u — visashortest pathin ¢ forsomeu,v € V, and if d[u]
= 6(s,u) at any time prior to relaxing edge (u, v), thend[v] = o(s,v) at
all times afterward.

Properties of shortest paths and relaxation

* Path-relaxation property (Lemma 24.15)

Ifp =<V, Vq,..., Vi >isashortest path froms = Vyto I/}, , and the edges
of p are relaxed in the order (Vy, V1), (V1,V5), ..., Vi—1, Vi), then d[V}]

= 6(s, V). This property holds regardless of any other relaxation steps that
occur, even if they are intermixed with relaxations of the edges of p.

* Predecessor-subgraph property (Lemma 24.17)
Onced|v] = 6(s,v) forallv € V, the predecessor subgraph is a shortest-

paths tree rooted at s.

(implicitly assume that the graph is initialized with a call to INITIALIZESINGLE- SOURCE(G, s) and
that the only way that shortest-path estimates and the predecessor subgraph change are by some
sequence of relaxation steps.)

outline

Bellman-Ford algorithm

* solves the si_n%]le-source shortest-paths problem in the general case in which edges can have
negative weignt.

* isremarkable in its simplicity

* detecting whether a negative-weight cycle is reachable from the source

a linear-time algorithm
» for computing shortest paths from a single source in a directed acyclic graph

Dijkstra’s algorithm
* alower running time than the Bellman-Ford algorithm
* requires the edge weights to be nonnegative

All algorithms in this chapter assume
* the directed graph G is stored in the adjacency-list representation.
» stored with each edge is its weight
* traverse each adjacency list, we can determine the edge weights in O(1) time per edge.

The Bellman-Ford algorithm

* Given a weighted, directed graph ¢ = (V, E) with source s and
weight functionw : E — R, (allow negative-weight edges)

* Returns a boolean value indicating whether or not there is a
negative-weight cycle that is reachable from the source

* If there is no such cycle, the algorithm produces the shortest paths
and their weights.

The Bellman-Ford algorithm

 After initializing the d and m values of all vertices, the algorithm
makes [VV| — 1 passes over the edges of the graph

* The algorithm uses relaxation, progressively decreasing an estimate
d|v] on the weight of a shortest path from the source s to each
vertex v € V until it achieves the actual shortest-path weight

o(s,v).

The Bellman-Ford algorithm

BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2fori « 1to|V[G]] — 1

3 do for each edge (u,v) € E|G]
4 do RELAX(u, v, w)

5 for each edge (u,v) € E|G]

6 doifd[v] > d[u] + w(u,v)
7 then return FALSE

8 return TRUE

Time complexity

BELLMAN-FORD(G, w, 5)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2fori « 1to|V[G]] — 1

3 do for each edge (u,v) € E[G]
4 do RELAX(u, v, w)

5 for each edge (u,v) € E[G]

6 doifd[v] > d[u] + w(u,v)
7 then return FALSE

8 return TRUE

The Bellman-Ford algorithm runs in time O(V E),

Example of the Bellman-Ford algorithm

36

37

38

39

40

Correctness of the Bellman-Ford algorithm

Single-source shortest paths in directed
acyclic graphs

* By relaxing the edges of a weighted dag (directed acyclic graph) G
= (V,E) according to a topological sort of its vertices, we can
compute shortest paths from a single source in (V' + E) time.

» Shortest paths are always well defined in a dag, since even if there are
negative-weight edges, no negative-weight cycles can exist.

* If there is a path from vertex u to vertex v then u precedes v in the
topological sort.

DAG-SHORTEST-PATHS (G, w, s)

1 topologically sort the vertices of G

2 INITIALIZE-SINGLE-SOURCE(G, s)

3 for each vertex u, taken in topologically sorted order
4 do for each vertex v € Adj|u]

5 do RELAX(u, v, w)

Example of Single-source shortest paths in DAG

a4

Example of Single-source shortest paths in DAG

critical path

 PERT chart

* Edges represent jobs to be performed, and edge weights represent the times
required to perform particular jobs.

* If edge (u, v) enters vertex v and edge (v, x) leaves v, then job (u, v) must be
performed prior to job (v, x).

* A path through this dag represents a sequence of jobs that must be performed in a
particular order

* A critical path is a longest path through the dag, corresponding to the
longest time to perform an ordered sequence of jobs.

* The weight of a critical path is a lower bound on the total time to perform
all the jobs.

How to find a critical path

* negating the edge weights and running DAG-SHORTEST-PATHS, or

* running DAG-SHORTEST-PATHS, with the modification that we replace
“00” by “—00” in line 2 of INITIALIZE-SINGLE-SOURCE and “>" by “<”
in the RELAX procedure.

